$\int \Omega=$

Rocks

Inve stigation
In order to design a rover that can travelon the surface of Mars, you need to have a good ide a of how big the rocks are.

Suppose that the table below represents data collected from previous missions to Mars. The tables tells us that, in one 10 meter by 10 meter area, there were 1440 rocks that ranged in size from 5 to 6 centimeters; 780 pebbles, with sizes of 6 to 7 centimeters; and so on.

size of rocks (centimeters)	Number of rocks in an area $10 \mathrm{mx1} \mathrm{~m}$
$5-6$	1440
$6-7$	780
$7-8$	460
$8-9$	290
$9-10$	190

Can you use this data to predict fowmany rocks would be from 10 to 11 centimeters, or 4 to 5 centimeters?

Here is one approach:

1. Graph the above data. For the "size"variable, use the lower value in the range (your first data point would be $(5,1440)$, second data point would be (6,780), etc.
2. See if there is a pattern to the data. Extend the pattern to estimate the number of rocks you would find between 4 and 5 centimeters across.
```
__________ rocks
```

3. Extend the patternin the other direction to estimate the number of rocks you would find that are between 10 and 11 centimeters across.
```
--------- rocks
```

Copyright © The FUTURES Channel, 2000. Permission is granted to transmit and copy this document for educational purposes so long as it is not altered and not sold. No page of this page which is not the entire page may be copied or transmitted in any form, physical or electronic, for any purpose, without express written permission from The Futures Channel.

If you knowenough alge bra, you can find a more exact answer by using equations, as follows:

1. Which of the following functions do you think might fit the graph of the data? (Hint: Two of the four might fit.)

$$
\begin{array}{ll}
y=k x & y=x^{2} \\
y=\frac{k}{x^{2}} & y=\frac{k}{x^{4}}
\end{array}
$$

2. For one of the functions you picked, use one of the data points from the table as your xand y values, to find the value of \mathcal{K}. Then try another data point. Do youget nearly the same value of K? Test all of the data points, and compare the values of k.
3. If those values are close to each other, then
a. take the ir average
4. graph the function with that value of \mathcal{K}
c. compare that graph to the firstgraph you made (of the actualdata).
5. If those values of k are not close to eachother, try another function from the four above, and repeat step 2.
6. What equation do you think is the best fit for the data?
