Planet Paths

Teaching Guidelines

Subject: Mathematics
Topics: Algebra--Coordinate Systems; Fractional Exponents; Patterns, Equations and Functions

Grades: 8-12

Concepts:

- Fractional exponents

Knowledge and Skills:

- Can solve equations involving fractional exponents
- Can plot a point in a two-dimensional coordinate system, given the coordinates, or determine the coordinates of a given point
- Can identify and describe patterns in a collection of related numerical data

Subject: Science
Topics: Astronomy
Grades: 8-12

Concepts:

- Orbit

Knowledge and Skills:

- Can describe the characteristics of the orbits of planets in the solar system

Materials: None

Procedure: The investigation is best done by students working individually or in teams of 2 .
Distribute the handout and ensure that students understand the question. Graphing calculators may be used if available.
$\left.C J=\rfloor \int J\right\rfloor=$

Plane Paths

Step 1. Do research to fill out the chart below:

Plane t	Average distance from the sun, in millions of miles d	Time duration of orbit, in years
Mercury		t

Step 2. Grapf the data from the chart, with average distance from the sun as the inde pendent variable and time as the dependent variable. Describe the patternyousee.
\qquad
\qquad
\qquad
\qquad
\qquad

Copyright © The FUTURES Channel, 2000. Permission is granted to transmit and copy this document for educational purposes so long as it is not altered and not sold. No page of this page which is not the entire page may be copied or transmitted in any form, physical or electronic, for any purpose, without express written permission from The Futures Channel.

Step 3. Try to find a value of Kfor each of these functions which creates a curve that matches the graph of planet paths. To do this:
a) Put in the data for one planet to get a value of K.
6) Ulse that value of \mathcal{K} to plot the function.
c) See fow closely your function matches the function of planet paths.

Function \# 1: $\quad t=\mathcal{K} d$
Function \# 2: $\quad t=K d^{2}$
Function \# 3: $\quad t=K d^{3}$
Function \# 4: $\quad t=\kappa d^{1 / 2}$
Function \# 5 $\quad t=k d^{3 / 2}$

Which is the correct function? \qquad

What is the value of k ? \qquad

