

PLANET PATHS Teaching Guidelines

Subject: Mathematics

Topics: Algebra--Coordinate Systems; Fractional Exponents; Patterns, Equations and Functions

Grades: 8 – 12

Concepts:

• Fractional exponents

Knowledge and Skills:

- Can solve equations involving fractional exponents
- Can plot a point in a two-dimensional coordinate system, given the coordinates, or determine the coordinates of a given point
- Can identify and describe patterns in a collection of related numerical data

Subject:	Science		
Topics:	Astronomy		
Grades:	8 - 12		
Concepts:			
• Orbit			
Knowledge and Skills:			
• Can describe the characteristics of the orbits of planets in the solar system			

Materials: None

Procedure: The investigation is best done by students working individually or in teams of 2.

Distribute the handout and ensure that students understand the question. Graphing calculators may be used if available.

Copyright © The FUTURES Channel, 2000. Permission is granted to transmit and copy this document for educational purposes so long as it is not altered and not sold. No page of this page which is not the entire page may be copied or transmitted in any form, physical or electronic, for any purpose, without express written permission from The Futures Channel.

Planet Paths

Step 1. Do research to fill out the chart below:

Planet	Average distance	Time duration of
	millions of miles	orbit, in years
	d	t
Mercury		
Venus		
Earth	93.0	1.00
Mars		
Jupiter		
Saturn		
Neptune		
Uranus		

Step 2. Graph the data from the chart, with *average distance from the sun* as the <u>independent</u> variable and *time* as the <u>dependent</u> variable. Describe the pattern you see.

Copyright © The FUTURES Channel, 2000. Permission is granted to transmit and copy this document for educational purposes so long as it is not altered and not sold. No page of this page which is not the entire page may be copied or transmitted in any form, physical or electronic, for any purpose, without express written permission from The Futures Channel.

Step 3. Try to find a value of *k* for each of these functions which creates a curve that matches the graph of planet paths. To do this:

- a) Put in the data for one planet to get a value of k.
- b) Use that value of *k* to plot the function.
- c) See how closely your function matches the function of planet paths.

Function #1:	t = kd
Function #2:	t = kd²
Function #3:	$t = kd^3$
Function #4:	t = kd½
Function #5	$t = k d^{3/2}$

Which is the correct function?

What is the value of k? ____